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Abstract: This paper presents a non-systematic odometry error qualificatory method base 
on fuzzy logic. Odometry is the most widely used navigation method for mobile robot 
positioning. It is well known that odometry provides good short-term accuracy, is 
inexpensive, and allows very high sampling rates. The disadvantage of odometry is that 
the position error grows without bound unless an independent reference is used 
periodically to reduce the error. We have started a research project that works out some 
intelligent methods for calculate the plausibility of odometric trajectory and pose of a 
mobile robot.  
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1. INTRODUCTION 

 
Odometry is the most widely used navigation method 
for mobile robot positioning. It is well known that 
odometry provides good short-term accuracy, is 
inexpensive, and allows very high sampling rates. 
However, the fundamental idea of odometry is the 
integration of incremental motion information over 
time, which leads inevitably to the accumulation of 
errors. Particularly, the accumulation of orientation 
errors will cause large position errors which increase 
proportionally with the distance traveled by the 
robot. Despite these limitations, most researchers 
agree that odometry is an important part of a robot 
navigation system and that navigation tasks will be 
simplified if odometric accuracy can be improved. 
 
In this paper we present an odometry error 
approximation algorithm, which based on fuzzy 
logic. This method uses only internal references and 
do not need other external absolute or relative 
measurement. 
 
 

2. DEAD RECKONING AND ODOMETRY 
 
Dead reckoning (derived from “deduced reckoning” 
of sailing days) is a simple mathematical procedure 
for determining the present location of a vessel by 
advancing some previous position through known 
course and velocity information over a given length 
of time [Dunlap and Shufeldt, 1972]. The vast 
majority of land-based mobile robotic systems in use 
today rely on dead reckoning to form the very 
backbone of their navigation strategy, and like their 
nautical counterparts, periodically null out 
accumulated errors with recurring “fixes” from 
assorted navigation aids. 
 
The most simplistic implementation of dead 
reckoning is sometimes termed odometry; the term 
implies vehicle displacement along the path of travel 
is directly derived from some onboard “odometer.” A 
common means of odometry instrumentation 
involves optical encoders directly coupled to the 
motor armatures or wheel axles. 
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This method uses encoders to measure wheel rotation 
and/or steering orientation. Odometry has the 
advantage that it is totally self-contained, and it is 
always capable of providing the vehicle with an 
estimate of its position. The disadvantage of 
odometry is that the position error grows without 
bound unless an independent reference is used 
periodically to reduce the error [Cox, 1991]. 
 
Odometry is used in almost all mobile robots, for 
various reasons: 
 

• Odometry data can be fused with absolute 
position measurements to provide better and 
more reliable position estimation [Cox, 
1991; Hollingum, 1991; Byrne et al., 1992; 
Chenavier and Crowley, 1992; Evans, 
1994]. 

• Odometry can be used in between absolute 
position updates with landmarks. Given a 
required positioning accuracy, increased 
accuracy in odometry allows for less 
frequent absolute position updates. As a 
result, fewer landmarks are needed for a 
given travel distance. 

• Many mapping and landmark matching 
algorithms (for example: [Gonzalez et al., 
1992; Chenavier and Crowley, 1992]) 
assume that the robot can maintain its 
position well enough to allow the robot to 
look for landmarks in a limited area and to 
match features in that limited area to 
achieve short processing time and to 
improve matching correctness [Cox, 1991]. 

• In some cases, odometry is the only 
navigation information available; for 
example: when no external reference is 
available, when circumstances preclude the 
placing or selection of landmarks in the 
environment, or when another sensor 
subsystem fails to provide usable data. 

 
2.1. Incremental Optical Encoders 
 
The simplest type of incremental encoder is a single-
channel tachometer encoder, basically an 
instrumented mechanical light chopper that produces 
a certain number of sine- or square-wave pulses for 
each shaft revolution. Adding pulses increases the 
resolution (and subsequently the cost) of the unit. 
These relatively inexpensive devices are well suited 
as velocity feedback sensors in medium- to high-
speed control systems, but run into noise and stability 
problems at extremely slow velocities due to 
quantization errors [Nickson, 1985]. The tradeoff 
here is resolution versus update rate: improved 
transient response requires a faster update rate, which 
for a given line count reduces the number of possible 
encoder pulses per sampling interval. A very simple, 
do-it-yourself encoder is described in [Jones and 
Flynn, 1993]. More sophisticated single-channel 
encoders are typically limited to 2540 lines for a 5-

centimeter (2 in) diameter incremental encoder disk 
[Henkel, 1987]. 
 
In addition to low-speed instabilities, single-channel 
tachometer encoders are also incapable of detecting 
the direction of rotation and thus cannot be used as 
position sensors. Phase-quadrature incremental 
encoders overcome these problems by adding a 
second channel, displaced from the first, so the 
resulting pulse trains are 90 degrees out of phase as 
shown in Figure 1. This technique allows the 
decoding electronics to determine which channel is 
leading the other and hence ascertain the direction of 
rotation, with the added benefit of increased 
resolution. 
 

 
 
Fig. 1. Phase-quadrature incremental encoder 
 

3. SYSTEMATIC AND NON-SYSTEMATIC 
ODOMETRY ERRORS 

 
Odometry is based on simple equations that are 
easily implemented and that utilize data from 
inexpensive incremental wheel encoders. However, 
odometry is also based on the assumption that wheel 
revolutions can be translated into linear displacement 
relative to the floor. 
 
This assumption is only of limited validity. One 
extreme example is wheel slippage: if one wheel was 
to slip on, say, an oil spill, then the associated 
encoder would register wheel revolutions even 
though these revolutions would not correspond to a 
linear displacement of the wheel. 
 
Along with the extreme case of total slippage, there 
are several other more subtle reasons for inaccuracies 
in the translation of wheel encoder readings into 
linear motion. All of these error sources fit into one 
of two categories: systematic errors and non-
systematic errors. 
 
3.1. Systematic Errors 
 
Systematic errors are particularly grave because 
they accumulate constantly. 
 
Sources of systematic errors: 
 

• Unequal wheel diameters. 
• Average of actual wheel diameters differs 

from nominal wheel diameter. 
• Actual wheelbase differs from nominal 

wheelbase. 
• Misalignment of wheels. 
• Finite encoder resolution. 



• Finite encoder sampling rate. 
 
In this work we do not concentrate to systematic 
error because it is corrected fairly well. 
 
3.2. Non-Systematic Errors 
 
The sources of non-systematic errors: 
 

• Travel over uneven floors. 
• Travel over unexpected objects on the floor. 
• Wheel-slippage due to: 

o slippery floors. 
o overacceleration. 
o fast turning (skidding). 
o external forces (interaction with 

external bodies). 
o internal forces (castor wheels). 
o non-point wheel contact with the 

floor. 
 
The problem with non-systematic errors is that they 
may appear unexpectedly (for example, when the 
robot traverses an unexpected object on the ground), 
and they can cause large position errors. 
 

4. MEASUREMENT OF NON-SYSTEMATIC 
ERRORS 

 
It is noteworthy that many researchers develop 
algorithms that estimate the position uncertainty of a 
dead-reckoning robot (e.g., [Tonouchi et al., 1994; 
Komoriya and Oyama, 1994].) With this approach 
each computed robot position is surrounded by a 
characteristic “error ellipse,” which indicates a region 
of uncertainty for the robot's actual position (see 
Figure 2.) [Tonouchi et al., 1994; Adams et al., 
1994]. 
 

 
 
Fig. 2. Growing “error ellipses” indicate the growing 

position uncertainty with odometry. (Adapted 
from [Tonouchi et al., 1994].) 

 
In our research work we worked out a multi level 
fuzzy inference system for approximation of 
uncertainty in odometry error. 
 

5. FUZZY LOGIC 
 
When the new concept of fuzzy sets and fuzzy logic 
was proposed by Zadeh [Zadeh, 1965], he was 
motivated by control and systems engineering 
aspects. Conventional control theory can cope with 

only a restricted class of systems, where linear, or at 
least, analytical input-output models can be 
constructed, or obtained by the eventually numerical, 
approximative solutions of the partial differential 
equation system describing the connection between 
input and output state variables (those being often 
dependent from each other). 
 
Fuzzy logic has a great advantage in comparison with 
discrete formal logical systems: it can approximate 
very well, it is suitable for the construction of 
approximative models that have any desired degree 
of exactness- or inexactness, and, by giving up the 
absolute goal of obtaining exactly optimal solutions, 
it is suitable for the construction of computationally 
effective algorithms of reasoning and control [Kosko, 
1992]. However, it is important to note at this point 
that good approximation does not necessarily mean 
precise approximation; in many applicational 
contexts, it is better to approximate as roughly as the 
concrete problem on hand allows it as preciseness of 
the approximation usually must be traded off for 
convenient computability (both in the sense of space 
and time complexity). 
 

6. FUZZY ODOMETRY ERROR 
 APPROXIMATION 

 
Calculate or guess the odometry error, without any 
references, is very difficult task. There is not any 
precise and elegant method.  
 
We looked for a method which need not any external 
references, can approximate the odometry error with 
appropriate accuracy by internal signals and 
parameters. However, it is important to note at this 
point that good approximation does not necessarily 
mean precise approximation. 
 
We work out a hierarchical fuzzy system for 
calculate the odometry error, it means the measure 
and the type of the error. Our system has two level of 
approximation, one symmetric for both wheel and 
second which collect and synchronise the wheel data. 
   
In the base level we use two fuzzy error 
approximators (FOA – Fuzzy Odometry 
Approximator), one for each driving wheel.  
 

 
Fig. 3. Wheel odometry error approximator 



 
One of these subsystems collects the pre-processed 
odometric data from the incremental encoder and 
uses the drive controller’s manipulated value as 
internal reference. The synchronisation block collects 
the time data and synchronise the fuzzy inferences 
for calculate the width of odometry error. 
 
By the help of appropriate rule base in this level we 
get information about the running of the wheel. The 
state of the wheel may be smooth running, locking, 
slipping and spiking. These inferences are available 
on both driving wheels from time to time. The 
Figures 4 - 6. show the fuzzy sets of the drive 
references, the odometry data and the output approx. 
odometry error and error type.  
 
 

 
Fig. 4. The input fuzzy variable of one encoder 
 
Table 1  Encoder input fuzzy variable 
 

Term Definition 
LAG encoder signal lagging 
SMT encoder signal smooth 
LED encoder signal leading 

 
    

Fig. 5. The input fuzzy variable of one drive 
reference signal 
 
Table 2  Reference input fuzzy variable 
 

Term Definition 
BRK motor breaking 
SMT motor smooth running 
ACC motor accelerating 

 

Fig. 6. The input fuzzy variable of one drive 
reference signal 
 
Table 3  Reference input fuzzy variable 
 

Term Definition 
LCK lock error type 
SPK spike error type 
SMT smooth running 
SLP slip error type 

 
On the second level the approx. odometry errors of 
the two wheels are passed to FPA, Fuzzy Pose 
Approximator, with the synchronic signals. The FPA 
infers the pose error (localisation and orientation) 
from these data and the a-priory knowledge.  
 
The full pose error approximation system is shown in 
Figure 7. 
 

Fig. 7. The input fuzzy variable of one encoder 
 
 

7. CONCLUSION 
 
In this paper we present an odometry error 
approximation algorithm, which based on fuzzy 
logic. This method uses only internal references and 
do not need other external absolute or relative 
measurement. 
 
Since it is an approximation with fuzzy inference 
algorithms it does not give a precise error calculation, 
but we can reach a very good estimation on odometry 
error and pose of the mobile robot.  
 
The method provides really good results in indoor 
using on smooth surface. On rough environment the 
approximation need more complex calculation or 
other references.  
 



In the future we have the intention of  working out an 
odometry error clearing method base on the above 
process.  
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